Preliminary Note

'Halex' fluorination of 1,2,4,5-tetrachlorobenzene in a pressure reactor

Yoshikazu Kimura* and Hiroshi Suzuki

Research and Development Department, Ihara Chemical Industry Co. Ltd., Fujikawacho, Ihara-gun, Shizuoka 421-33 (Japan)

(Received November 13, 1991; accepted April 1, 1992)

Abstract

Halogen exchange of 1,2,4,5-tetrachlorobenzene with spray-dried potassium fluoride has been found to proceed smoothly using 1,3-dimethyl-2-imidazolidinone as a solvent at 300 °C in a pressure reactor to give 2,4,5-tri-fluorochlorobenzene without any rearrangement.

The 'Halex' fluorination of trichlorobenzenes at an elevated temperature in a pressure reactor has been announced recently [1]. This leads us to publish the results of our investigations on the 'Halex' fluorination of 1,2,4,5tetrachlorobenzene (1) with spray-dried potassium fluoride (KF). Our main focus was a preparation of 2,4,5-trifluorochlorobenzene (2), a useful intermediate for quinolone antibacterial drugs [2, 3].

Early work by Yakobson *et al.* reported the reaction of 1 with KF at 450-460 °C without a solvent. They reported a low yield of a complex mixture of chlorofluorobenzenes including rearranged products via a benzyne intermediate [4].

We have recently disclosed data on the use of 1,3-dimethyl-2-imidazolidinone (DMI) as a solvent for the 'Halex' reaction of chlorobenzonitrile derivatives with KF at an elevated temperature ($300 \,^{\circ}$ C) in a pressure reactor

Run	Metal	Solvent	Additive	Temp.	Time	Material rec	overed (%) ^b			
° N	nuoriae (equiv.)		(.u. equiv.)		(u)		F F F	F ₂	F2	$\langle f_{1} \rangle^{Cl_2}$
1	KF (3.9)	DMI		300	8	0.6	31.0	2.2	30.3	1
0	KF (3.9)	DMI	ł	300	24	11.9	48.3	1.0	22.7	1
e 2	KF (3.9)	IMU	FeCl ₃	300	×	3.3	42.4	2.5	30.4	1
4	KF (3.5)	IMU		280	8	3.8	34.5	1.5	23.4	I
	CsF(0.4)									
2	KF (3.9)	AMN	ł	300	8	ł	3°.3	13.8	6.2	9.9
^a A 300 (34.0) ml Hastelloy g, 0.585 mol)	'C' pressure and 1,2,4-tri	reactor equipped methylbenzene (1.	with a ma 7 g, intern	ignetic driv al standare	ve stirrer was 1 for GLC) in	charged with 1 DMI (150 ml).	(32.1 g, 0.1 The reaction	5 mol), spra mixture was	y-dried KF stirred at

300 °C for 8 h. The mixture was cooled to room temperature and filtered to remove inorganic materials. The residue was analyzed by GLC methods. $^{\rm b}{\rm Yields}$ were determined by GLC using an internal standard technique.

290

'Halex' fluorination of 1, 2, 4, 5-tetrachlorobenzene^a TABLE 1

[5]. Based on these results, we have tried the 'Halex' reaction of 1 in DMI. The results are summarized in Table 1. As expected, 2 was produced in a significant yield, and no rearranged products were found in the reaction mixture.

To clarify the structure of the isolated product, **2** was submitted to hydrogenolysis (5% Pd/C, 1 atm H₂) in refluxing ethanol. Product **3** was confirmed by comparison with authentic 1,2,4-trifluorobenzene and 1,3,5trifluorobenzene. A similar reaction in 1-methyl-2-pyrrolidinone (NMP) afforded a small amount of the desired product **2**, accompanied by a large number of dehalogenated products and tarry materials (Table 1, run 5).

The reaction of **3** with acetyl chloride in the presence of aluminium chloride to give 2,4,5-trifluoroacetophenone (**4**) has been reported, the latter being readily converted to 2,4,5-trifluorobenzoic acid (**5**) [6]*. However, the availability of **3** is a problem for these known routes. 'Halex' fluorination of 1,2,4-trichlorobenzene suffered from less than acceptable yields of **3** ($2.5 \sim 8.3\%$) [9].

Although a formal synthesis of **5** was completed via **3**, we have attempted a direct transformation of **3** into **5**. Treatment of **2** in ether with butyl-lithium (hexane) at -78 °C, followed by solid CO₂ gave a white solid (76% yield) having a melting point of 115–116 °C. GC–MS analysis of the product indicated a mixture of trifluorochlorobenzoic acids **6** (c. 7:3) [m/z 282 (M⁺) after silylation] but no **5**. Unfortunately, the direct conversion of **2** into **5** was unsuccessful, but the present approach via **3** may offer a new route to **5**.

References

- 1 R. G. Pews and J. A. Gall, J. Fluorine Chem., 52 (1991) 307; ibid., 53 (1991) 379.
- 2 For examples of the use of 5 in the preparation of quinolone antibacterial agents, see:
 (a) M. Schriewar, K. Grohe, H. J. Zeiler and K. G. Metzger (to Bayer AG), US Pat. 4 841 059 (1989) [Chem. Abstr., 107 (1987) 198 345k]; (b) D. T. W. Chu (to Abbott Lab.), US Pat. 4 767 762 (1988) [Chem. Abstr., 107 (1987) 217 616t]; (c) Daiichi Seiyaku Co., Jpn. Pat. 60-72 885 (1985) [Chem. Abstr., 103 (1984) 141 855q].
- 3 For a review of quinolone antibacterial agents, see: L. A. Mitsher, R. M. Zavod, P. V. Devasthale, D. T. W. Chu, P. N. Sharma and A. G. Pernet, *Chemtech.*, (1991) 50.
- 4 G. G. Yakobson, V. E. Platonov, A. K. Petrov, V. S. Kryukova, N. A. Gershtein and N. N. Vorazhtsov Jr., Zh. Obshch. Khim., 36 (1966) 2135 Chem. Abstr., 66 (1967) 94740d.
- 5 H. Suzuki and Y. Kimura, J. Fluorine Chem., 52 (1991) 341.
- 6 (a) T. Kondo, T. Kawai, and T. Mizukami (to Central Glass Co.) Jpn. Pat. 2-184 650 (1990)
 [Chem. Abstr., 114 (1990) 23 551s]; (b) K. Bauman and R. Kuegler (to Lentia Chem. Gmbh), Ger. Pat. 3 840 375 (1990) [Chem. Abstr., 113 (1990) 152 030z].
- 7 L. J. Belf, M. W. Buxton and J. F. Tilney-Bassett, Tetrahedron, 23 (1967) 4719.
- 8 A. J. Bridges, W. C. Patt and T. M. Stickney, J. Org. Chem., 55 (1990) 773.
- 9 R. H. Shiley, D. R. Dickerson and G. C. Finger, J. Fluorine Chem., 2 (1972/73) 19.

^{*}The preparation of 5 via cyanation [7] or lithiation [8] of 2,4,5-trifluorobromobenzene has been reported.